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SUMMARY 

The onset of the BCnard-von K h i n  instability consisting of the selective amplification of the linear unstable 
mode and yielding finally the well-known saturated state has been described many times on the basis of both 
numerical and experimental results in various configurations. However, neither the role of the harmonics and 
their coupling has been examined quantitatively, nor has the spatial structure of the instability been studied in 
detail. A recently developed numerical method of simulation of quasi-periodic flows makes it possible to 
integrate the investigation of linear and non-linear characteristics within a single numerical method. The 
simulation of the 2D afterbody wake presented in this paper allows us to follow the amplification of the 
instability over many orders of magnitude. It is  shown that at all stages of its development the instability is 
characterized by a series of harmonics, each of them amplified with a multiple of the fundamental amplification 
rate during the linear regime. The amplification of harmonics results fiom an energy transfer fiom the mean flow 
to harmonics of increasingly higher order. Ultimately the energy losses compensate this transfer and an 
equilibrium, commonly called saturation of the instability, is reached. It is shown that the coupling between the 
fundamental harmonic and the mean flow is mainly responsible for the saturation. The convergence rate of the 
development of the instability into harmonics is investigated. A full description of the spatial structure of all 
significant harmonics both in the linear regime and at saturation is obtained. The results show that time and space 
characteristics of the instability can be investigated simultaneously in an efficient way. Such an approach might 
be particularly important in 3D wakes where the geometry has a strong influence on the behaviour of unstable 
flows. 

KEY WORDS. numerical simulation; spectral time discretization; NavierStoka equations; laminar flow; shear flow; 
unsteady flow; penodic flow; instability; Hopf bifurcation; non-linearity; non-linear theory 

1. INTRODUCTION 

The investigation and theoretical analysis of instabilities have been the objective of experimental and 
theoretical studies for several decades. One of the reasons why wakes were mostly focused on'-' is 
their typical Landau-like behaviour characterizing a Hopf bifurcation believed, since Landau,6 to be 
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at the origin of the transition to turbulence. Other theoretically simple or experimentally realizable 
configurations were, however, also investigated from the same point of It has been 
recognized that a significant amount of information can be obtained from linear theory, but 
difficulties in solving the linearized NavierStokes eigenvalue problem limited linear theory to the 
parallel OrrSommerfeld framework.’ This framework has been shown to be inadequate for wakes,” 
which explains why, until the pioneering, fully 2D, linear analysis of the onset of the instability in 
wakes carried out by Jackson,” no significant agreement between theory and experiment could be 
achieved even for such a fundamental characteristic as the critical Reynolds number. 

The rapid development of numerical techniques allowing direct resolution of the Navier-Stokes 
equations has soon made linear theory obsolete by providing a tool for accounting fully for the non- 
linear effects3* I 3 - l 5  and for supplanting the experimental results in accuracy. In the same way as in 
other fields of fluid mechanics, direct numerical simulation (DNS) became, however, rather an 
alternative for experiments than a means of a direct understanding of the described phenomena. The 
result of this approach to numerical computing was a gap between the theory, which remained at the 
weakly non-linear level yielding verifiable results only in very special geometrical configura- 
t i o n ~ , ’ ~ ~ , ’ ~  while DNS and increasingly available computing power made simulations of 3D unsteady 
and even turbulent flows possible. The effort of development of DNS has been too numerically 
oriented to directly stimulate a better understanding of the non-linear mechanisms described by the 
solved equations. The main contribution of DNS to the understanding of the non-linear mechanisms 
in flows lies in their improved accuracy and the possibility to control the boundary conditions and 
thus eliminate side effects. In the case of the onset of instabilities, DNS thus provided accurate results 
allowing one to shed light on the details of the fundamental non-linear mechanisms governing the 
development and saturation of the Hopf bifiucation.‘’ Our last numerical and theoretical work’’ drew 
attention to the physical relevance of the modes of the time Fourier decomposition of the wake and 
simultaneously unveiled a certain number of serious drawbacks of DNS preventing the study of some 
theoretically important issues such as the behaviour of the instability at its very onset, the onset of the 
saturation and the role of coupling of individual modes. 

For theoretical purposes it is often useful to reduce the description of the wake to a Landau model 
with appropriately fitted constants. Experimental attempting to measure these constants 
showed that the dificulties and errors involved are mainly due to the impossibility of capturing 
accurately the linear regime (the stage where linear theory applies). This can be explained by the fact 
that the physically interesting transients related to the instability are overshadowed by experimental 
transients accompanying the change in experimental boundary conditions. In numerical experi- 
ments’’ the transients can be significantly reduced.’ However, full elimination of the numerical 
transients is extremely costly and is possible only near the instability threshold. Moreover, it does not 
allow one to see the higher harmonics which arise from the rounding errors only when saturation is 
approached. 

Recently” the importance of the knowledge of the spatial structure of the instability has been 
recognized. Classical simulation methods can provide access to this structure at saturation; however, 
the study of its evolution from the linear regime to saturation has been impossible. 

In the present paper we give results of a new theoretical approach and a new numerical technique, 
the principle of which was presented and the numerical properties of which have been analysed in 
Reference 19. The method allows us to follow the relevant characteristics of the Bhmd--von €&man 
instability in a continuous way and with high accuracy from the linear regime until saturation. Our 
method is far m m  accurate than current direct simulation methods as far as the time dependence is 
concerned, provides direct access to theoretically relevant entities and allows their detailed study. 
The principal theoretical issues addressed in this paper are the investigation of the very onset of the 
instability and the problems of computing the basic flow and of solving the linear instability problem 
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at arbitrary supercritical Reynolds numbers. We also study the generation of higher harmonics, their 
amplification and structure before the onset of strongly nonlinear effects leading to saturation. The 
process of saturation is investigated thoroughly from the point of view of amplification rate decrease, 
angular velocity increase, mode deformation, non-uniformity of local angular velocities and Landau 
model validity. 

From the numerical point of view the very high time discretization accuracy obtained is 
emphasized. As primarily qualitative aspects were addressed, a relatively poor spatial discretization 
accuracy was used. The obtained spatial characteristics are, nevertheless, qualitatively in very good 
agreement with direct simulation results obtained using a highly accurate, experimentally validated, 
spatial discretization method.” From the discussion of this paper it is clear that if high-order 
harmonics are needed for the sake of the time discretization accuracy or for other purposes, a more 
accurate spatial discretization is required. The presented numerical method being compatible with a 
rather wide variety of unsteady NavierStokes solvers (time-marching techniques), the implementa- 
tion of available, highly accurate space discretizations is straightforward. 

We consider the presented approach to be particulary promising for the study of secondary 
instabilities” in wakes and thus to be able to provide a deeper understanding of the transition to 
turbulence. 

2. THEORETICAL BACKGROUND 

2. I .  Governing equations 

In our recent paper” we pointed out the importance of the Fourier decomposition of the Navier- 
Stokes equations for the understanding of the onset of the Benard-von K h h  instability. We shall 
first explain how a system of equations yielding directly the Fourier modes of the flow is obtained 
from the Navier-Stokes equations for incompressible and viscous flows in the velocity-pressure 
formulation 

av 
- + vvv - vv=v 4- vp = 0, 
at 

where v is the velocity vector and p is the pressure. These equations have to be completed by 
boundary and initial conditions, which will be discussed in the next subsection. In this paper we shall 
be concerned with unsteady flows with a dominant frequency. In this framework a functional 
approach to the spatial characteristics and the following notation appeared to be useful.” The non- 
linear operator in (1) and (2) will be denoted 

F(v) = -vV2v + B(v, v), (3) 

where B is the bilinear operator that accounts for the non-linear contribution of the advective terms 
and of the pressure: 

hi a hj &k B(v, w)i = ?I. - - - ( v y  -- . 
J ax, axi axk axj (4) 
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The inversion of the Laplacian operator is equivalent to the usual pressure correction procedure. We 
use this writing to stress the non-linear role of the pressure term of the NavierStokes equation (1). 
This shorthand notation includes also an appropriate treatment of boundary conditions within the 
operator (3). We amve at the following formulation of (1) and (2), 

av 
- at + F(v) = 0, ( 5 )  

allowing us to focus on the temporal aspects of the equations. The initial condition (to be discussed 
later in the case of the onset of in stability in a wake) will be written as 

v(0, .) = g(.). (6) 

In what follows, the fields of velocity, pressure and their harmonics are considered globally as 
elements of some functional space defined on the whole computational domain 11; therefore we 
suppress all the spatial variables in our notation and replace them by a point. 

2.2. Separation of periodic oscillations 

It is well-known’*2 that wake are characterized by periodic oscillations. In the transient phase of the 
onset of a wake, slow transients are superimposed on the periodic behaviour. To separate the periodic 
oscillations from the transients, let us consider, instead of (5), the equation 

a u a u  
- + + F(u) = 0, 
as (7) 

where a new time variables s has been introduced. It is clear that if we replace s by r in (7) in the sense 
s(t)  = t and denote 

v(t, .) = u(t, t ,  .), (8) 

then v satisfies equation (5).* As a result, the formulation (7). (8) becomes equivalent to the original 
NavierStokes equations written in the shorthand notation of (5). Now we can assume the 1-variable 
to express the periodicity, i.e. the solution u is assumed to be (exactly) periodic as a bc t ion  of t  with 
a given period T: 

(9) u(s, t + T, .) = u(s, t ,  .). 

As has been said above, the behaviour of the field v need not be strictly periodic. The period T is self- 
generated by the flow and is not given a priori; during the development of the instability, the period 
varies, obeying roughly the Landau model.6.’s Equation (8) shows that the variable s can account for 
any deviation of the solution v of the NavierStokes problem (5) from the t-dependence imposed on 
the solution u. In particular, the s-variable can accommodate non-periodic deviations or deviations 
from the imposed period. The magnitude of these deviations is quantified by the s-derivative in (7). In 
principle, the latter may be arbitrarily large; however, the accuracy of the numerical method 
described below is highest if this term becomes as small as possible. 

Equation (8) is a shorthand writing for the composed function relation between the function V(I. .) of one variable (space 
variables are not discussed) and the function u(s. z. .) via v(r. .) = u(s(r). dr), .), where s(r) = r and dt) = 1. As a result, 

In equation (7) we denote the z-variable as r 
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To obtain a complete mathematical formulation, we add the initial condition 

u(O,t, .) = h(t, .), 
where h(t, .) is periodic with the period T introduced in (9) and such that 

h(O, .) = g(.). 

the field g being the same as in (6). The initial condition (10) provides the possibility to include an 
initial guess concerning the periodic behaviour of the solution such as the expansion into harmonics. 

2.3. Fourier decomposition of the periodic behaviour 

decomposition 
The assumed periodicity (9) of u(s, t ,  .) as a function o f t  makes it possible to write the Fourier 

00 

u(s, t ,  .) = C cn(s, .)einO', 
n=-m 

where o = 2n/T. The developed solution being real, the coefficients of the development (which are 
functions of s and of the spatial variables) satisfy the relation 

c,(s, .) = c-,(s, .). 

The Fourier decomposition (1 1) inserted into (3), (7) and (10) yields the system of coupled non-linear 
equations 

W 
*n 

as k=-m 
- + (ino - vv2)c, + B(c~ ,  C,,J = 0. 

For theoretical considerations the system (1 2) presents the advantage of taking account explicitly of 
the non-linear role of the pressure term via (4). The numerical implementation is based on a 
straightforward Fourier decomposition of the NavierStokes equations (1) and (2). Let us decompose 
also the pressure into the Fourier series 

00 

p(s,  1, .) = C d,(s, .)einw', 
n=-oo 

where again d,(s, .) = d-,(s, .). The system (12) can then be written equivalently as 
W 

*n - + (in0 - vV2)c, + C (ck . V ) C , - ~  + Vd, = 0, 
as k=-W 

the Fourier components c,  satisfying the continuity equation 
v ' c, = 0.  

(14) 

Except for the non-linear term in (14) and the complex nature of the Fourier components c, and d,, 
the structure of individual equations (14) and (1 5) is identical with that of (1) and (2). For this reason 
the numerical implementation of their resolution requires only minor modifications of a standard 
NavierStokes solver. The number of harmonics accounting with a given accuracy for the time 
behaviour of an infinite cylinder wake can be assessed from the spectra in Reference 15. It appears 
that rather high above the instability threshold, five harmonics yield a better than 1% accuracy 
throughout the whole flow field. Even to reach a high accuracy, it is thus sufficient to truncate the 
system (14), (1 5) at a moderate number of harmonics. As we shall see later on, the correct resolution 
of higher harmonics requires a higher accuracy of the spatial discretization, but the computing effort 
can easily be optimized and a criterion relating the time and space discretizations can be established. 
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Moreover, any harmonic can be artificially suppressed, which provides a valuable tool for 
investigating the role of the non-linear coupling of individual harmonics which has been claimed in 
Reference 15 to be responsible for the Landau-like behaviour of the wake. The possibility of artificial 
switching on and off of harmonics provides also a means for an accurate computation of the 
‘unperturbed’ basic flow in an arbitrary configuration and for any supercritical Reynolds number and 
of solving the linear instability problem. 

The initial condition (10) yields, after a Fourier decomposition, initial values c,(O, .) of the Fourier 
coefficients cn appearing in (12) and (14). In the context of the instability onset this formulation of the 
initial condition appears to express best the physics of the problem. 

3. NUMERICAL, IMPLEMENTATION 

In this paper we focus primarily on the physical results. The numerical details of the method used 
have been given elsewhere’’ and only a brief summary is presented in this section. 

3. I. Modijication of the time-marching method 

The numerical implementation of the resolution of (1 4) and (1 5) is based on a modification of an 
implicit finite volume time-marching resolution of the NavierStokes equations (1) and (2), second- 
order-accurate in both space and time, developed by Braza and co-~orkers . ’~.~’  The time-marching 
procedure is now applied to the s-time variable which subsists in the system (14). First- and second- 
order time discretizations have been considered. For simplicity we present only the first-order version 

where C; and 0;: stand for the Fourier components c, and d,, discretized in space at the time 
s = mA7, As being the s-time step, and V and V2 denote the discretized gradient and Laplacian 
operators. 

To solve the discretized system (17), we introduce the intermediate iteration procedure 

-vVZ(c;)’* + V ( Z ) ’  = 0, 

V2(q)  ’+’ = v.(c;) ’,*, 
m j + l  - (C, ) - (cy* - V((q)’+l, 

(q)J+l (qy+’ = (X)’ + -- A s ’  

where (C;)’ E C;, (x)’ = q, (c)’“‘ = Cm+’ ,, and ( q ) ’ ~  = e+’. j,, standing for the 
number of internal iterations. 

Equations (1 8H2 1) are discretized by a second-order finite volume method in space and solved by 
an AD1 algorithm. Ah appearing in (1 8) is the acceleration parameter of the AD1 algorithm chosen as 
to optimize its convergence. Each internal j-step represents one AD1 sweep in both space directions in 
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(18). Equation (19) is solved by several iterations (not written explicitly) of an AD1 Laplace solver to 
obtain a divergenceless next approximation via (20). The ( j  + 1)th internal pressure correction is 
given by (2 1). A fixed number of internal steps jmax is chosen to obtain a satisfactory convergence 

lim (c:)' + c:+' 
j-w 

towards the next solution of the external time-stepping procedure (17). At this stage it has to be 
pointed out that special care has been given to the separation of the physical s-time stepping from the 
internal AD1 iterations. In the original time-marching scheme used to solve unsteady Navier-Stokes 
problems, the time step At has both the role of a physical time step as well as that of an acceleration 
AD1 parameter. The convergence and accuracy are controlled by the size of the time step. In 
particular, it appears that even if the scheme is, in principle, fully implicit, it may diverge for large 
time steps. The reason is imperfect matrix inversion. In our case, as we shall see later on, it is 
important to control the accuracy of the solution of the internal iteration procedure which has been 
achieved by allowing an arbitrary choice of the number of internal steps. The result is that our 
procedure converges for a fairly arbitrary time step As, typically of the order of one period T. 

The convergence with respect to the internal iterations has been analysed in detail in Reference 19. 
The same numbers of internal steps as those given in Reference 19 are used here. As a matter of fact 
the accuracy of the internal inversion procedures approaches the machine accuracy, which is certainly 
not optimal in terms of computing costs. In Reference 19 it is shown that the residual of the equations 
is reduced to 2 x lo-', which is to be compared with 4 x l op4  obtained with a classical time- 
marching second-order scheme with a very h e  time step. In spite of this, a CPU time reduction as 
compared with the classical scheme is achieved even with five harmonics taken into account. 

3.2. Spatial discretization and conjguration 

The spatial discretization is based on a finite volume method applied to the Navier-Stokes 
equations written in their conservative form and integrated over an elementary ~ o l u m e . ' ~ * ~ '  Primitive 
variables (u, v , p )  are discretized on staggered meshes to avoid the numerical problem of the 
checkerboard instability. A centred discretization of the difhsion term yields a second-order space 
accuracy. 

The configuration and the boundary conditions are presented in Fig. 1. For the sake of numerical 
simplicity we chose the configuration of an afterbody wake. The wake arises at the inflow of two 
small 2D channels into a wider one. The flow is the same as that appearing past a long rectangular 
obstacle placed in the channel. Parabolic channel flow velocity profiles are applied at the inlet. 
Conhed flow between two solid walls (no-slip boundary conditions) is considered. A zero-velocity 
boundary condition placed symmetrically at the inlet simulates the obstacle. Being steady, these 
Dirichlet boundary conditions yield zero boundary conditions for all c, with n # 0 and are identical 



760 G.  CARTE, J. DUSEK AND P. FRAUNIE 

with the boundary conditions for the mean velocity co. The outflow boundary conditions are of the 
Neumann type &,/ax = 0. This unphysical boundary condition is placed sufficiently far downstream 
so as not to influence the vortex shedding. 

The (102 x 32)-point grid used for the simulations is shown in Figure 2. The pressure grid, i.e. the 
grid whose lines intersect at points where pressure is determined, is represented. The choice of the 
space discretization method is not optimal in view of the possibilities of the time discretization 
method used. However, the grid refinement has been tested to be adequate for the Reynolds number 
considered in what follows. It is sufficient to yield the critical Reynolds number within about 1% 
accuracy. This means that the basic flow and the fundamental of the instability are resolved 
accurately enough. Owing to their simple spatial structure, this is not a difficult task. To resolve the 
higher harmonics is already more difficult. For example, far downstream where the gnd is too sparse, 
the discretization was found inadequate for the fourth and fifth harmonics to be given correctly. 
However, for the considered Reynolds number, harmonics of order higher than two contribute only 
about 0.1% even at saturation (see Reference 19 and Section 4.6.1). 

3.3. Period correction 

In the case of an unsteady wake the period is self-generated, i.e. not exactly known, and it varies in 
time before the wake reaches saturation. As we have seen, this does not prevent our method from 
being applicable, the period inaccuracy and variations being accommodated by the s-variable. 
However, the time discretizations of the s-variations and of the t-dependence are of hdamentally 
different nature. The t-discretization (the Fourier decomposition) is a spectral one and is thus much 
more accurate. Actually, we have seen that simulations of an infinite cylinder wake have shown an 
extremely good accuracy of this discretization. On the other hand, the first- or second-order finite 
difference s-discretization is far less accurate. To reach the highest possible time accuracy, it is 
necessary to accommodate the periodic behaviour as exactly as possible in the 1-discretization. For 
this purpose a period correction algorithm adjusting the instantaneous period value at each s-step has 
been implemented. It is based on a minimization of the s-derivative in (14). For flows with slow 
transients, such as wakes, this algorithm allows us to reach an extremely high time accuracy. 

The principle of the algorithm is based on the fact that for periodic solutions any inaccuracy Am in 
the determination of the angular velocity of the Fourier decomposition (1 1) results in a rotation of the 
Fourier components in the complex plane, the angular velocity of the rotation of the Fourier 
component c, being equal to nAm. The correction of the period even for non-periodic solutions is 
therefore based on shifting the angular velocity of the harmonics to the Fourier expansion angular 
velocity m. The period being exactly uniform throughout the flow and the same for both velocity 
components and the pressure at saturation and for small  amplitude^,'^ any field component at any 
fixed point in the flow can be used for this purpose. For the sake of accuracy the fundamental 
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t 

0.0 10.0 

Figure 2. (102 x 32)-point grid used for simulation 
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harmonic c ] , ~  of the transverse velocity (u) and a point on the flow axis near the maximum of the first 
v-harmonic have been chosen. At each time step Ao is calculated from the phase variation of c ] , ~  at 
the chosen point z0 and is used to update w, so that the value o + Ao instead of o is used in (1 7) at 
the next s-step. The period correction amounts to adjusting the angular frequency of the Fourier 
expansion in such a way that the phase of c ~ , ~  at Z0 is kept steady: 

This constraint added to (14) and (15) yields the exact, variable angular Frequency of the wake. 

4. NUMERICAL SIMULATION OF THE INSTABILITY 

4.1. Confined ajierbody wake 

The numerical algorithm described above is applied to the study of the development of the 
Benard-von Karman instability in the afterbody wake described in Section 3.2 near the instability 
threshold. The Reynolds number is based on the bulk velocity (U,  = 1) and the width of the obstacle 
(Do = f). The critical Reynolds number has been found to be about 84 in this case and the value 
Re = 90 has been retained for the flow simulation. The length and velocity scales are made non- 
dimensional with respect to the domain width L = 1 and the bulk velocity Ub = 1 respectively. 

4.2. Transient flow simulated with a standard time-marching scheme 

The standard way of simulation of the unsteady wake is the direct numerical solution of (1) and (2). 
Abundant numerical experience, especially concerning the simulation of the 2D wake of an infinite 
~ y l i n d e r , ' * ~ ~ ' ~ ~  shows that the instability parameters obtained by this simulation technique are very 
sensitive to both the spatial and time discretization accuracy. In our case the qualitatively correct 
behaviour of the wake (onset of vortex shedding) could be obtained with as few as 100 time steps per 
period using a standard second-order-accurate finite difference time-marching scheme combined with 
finite volume space discretization. However, to obtain a level of saturation amplitude roughly 
independent of the time step, At = was necessary, yielding approximately 1000 time steps per 
period. 

The experimentally and numerically most frequently investigated flow characteristic in symmetric 
configurations is the transverse velocity along the flow axis. The reason for this is the absence of the 
mean value and of even harmonics on the axis for the transverse velocity ~omponent. '~ Owing to the 
rapid convergence of the Fourier decomposition, the signal obtained in this way is almost identical 
with that of the fist harmonic and is thus particularly easy to interpret the~retically.'~ Figure 3 shows 
the time evolution of the transverse velocity v at the point (1.04,O.O) on the axis of symmetry of the 
domain. About 140 periods, corresponding to 140,000 time steps, are represented. For this number of 
periods it is possible to extract the envelope using the Hilbert transformz3 (see Figure 4). The 
logarithmic plot of this envelope shows a deviation from the theoretical exponential growth at the 
beginning of the computation, which is due to numerical transients. As a consequence, the 
determination of the exponential growth rate characteristic for the onset of the instability is rather 
difficult to obtain accurately by a direct numerical simulation. The problem of numerical transients is 
still more serious for the analysis of the time evolution of the angular velocity o obtained via the 
Hilbert transform (Figure 5) .  For very small amplitudes (at the beginning of the simulation) the 
angular velocity should be roughly constant. Actually, this part of the curve represented in Figure 5 is 
completely perturbed by numerical transients. The problem of numerical transients is difficult to 
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Figure 3. Time evolution of transverse velocity L; for calculation with standard time-marching scheme 
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\ Figure 4. Time evolution of envelqK of transverse velocity u for calculation with standard time-marching scheme 
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Figure 5. Time evolution of war velocity w for calculation witb standard time-marcbkg scheme 
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avoid owing to the rounding errors limiting the number of orders of magnitudes over which the 
increase can be simulated and owing to the limited physical time of the instability development. This 
problem is much the same as in an experimental approach and makes the direct numerical solution of 
the NavierStokes equations inadequate for the study of instability parameters higher above the 
instability threshold. 

4.3. Steady solution of the NavierSrokes equations: basic flow 

Let us consider the Navier-Stokes problem defined in Sections 2 and 3 near the critical Reynolds 
number. For supercritical Reynolds numbers the NavierStokes equations describe two steady states: 
a time-independent one and a periodic one. For subcritical Reynolds numbers the time-independent 
solution is stable. For supercritical Reynolds numbers it becomes unstable and it is the periodic 
solution which is stable. This behaviour is characteristic of a bifurcation (a Hopf bihcation in this 
case6). If  a direct NavierStokes solver is accurate enough, it reproduces faithfully this behaviour and 
yields spontaneously the unsteady (periodic) solution at a supercritical Reynolds number. This was 
the case of the simulation presented in the previous subsection, where numerical noise was sufficient 
to generate the unsteady flow starting with a rather arbitrary initial condition. The ability to converge 
to the physically correct values of both existing solutions is a very positive quality of a NavierStokes 
solver; however, it makes the computation of the unstable steady solution, which we shall call the 
basic flow, difficult. In symmetrical configurations this difficulty can be overcome owing to the 
symmetry breaking accompanying the Hopf bifurcation. The basic flow even for a highly 
supercritical Reynolds number can be obtained by forcing the symmetry of the flow that gets broken 
at the bifur~ation.~ If the configuration presents no symmetry, this trick cannot be used. In this 
subsection we explain how the basic flow can be obtained by our method. 

Let us retain only the (real) mean value terms (n = 0) in the Fourier series (1 1) and (13). It is 
immediately seen that in this case equations (14) and (1  5) coincide with (1) and (2). The difference is 
that we can impose a time step As comparable with the Strouhal period of the instability which forces 
the steady solution of (14) and (15). (In fact a As equal to one-tenth of the period does the same job.) 
The s-variable then assumes the role of a simple relaxation parameter allowing us to start the 
computation with a rather arbitray unphysical initial condition. The basic flow solution will be 
denoted %,bas. 

The same s-time step can be kept to simulate the whole instability if more terms in the Fourier 
expansions are kept. This provides a very physical interpretation of this way of computation of the 
basic flow: the harmonics being blocked, the instability cannot develop. 

A typical transverse profile of the resulting (in our case symmetric) basic flow is plotted in Figure 
6. It can be seen that the confinement modifies the basic flow rather substantially in comparison with 
an unconfined wake. The characteristic velocity deficit along the axis responsible for the onset of the 
instability is, however, clearly visible. 

A better way of representing the perturbation of the flow by the obstacle consists of representing 
the velocity deficit as the difference of the flow without and with the obstacle. In our case 

CO,def = "channel - CO,bas* (23) 

where vchannc, stands for the parallel parabolic channel flow profile. The longitudinal velocity deficit 
and its typical transverse profile are plotted in Figures 7 and 8 respectively. The plot of the flow 
deficit of the confined wake appears to be very similar to that of an unconfined wake. 
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Figure 6. Transverse profile of streamwise u-velocity of basic flow at x = 4.01 

4.4. Linear instability 

Linear instability theory is based on adding an infinitesimal perturbation to the basic flow 
determined in the preceding subsection and linearizing the NavierStokes equations by dropping the 
non-linear terms of second order in the perturbation. This approach amounts to keeping only the 
mean value and the first harmonic (the terms corresponding to n = 0, f l )  in the Fourier series ( I  1) 
and dropping the feedback from the first harmonic to the mean flow. 

Indeed, if we use the simplified notation (12), we obtain the two equations 

-vV2co + B(q, ~ g )  = 0, 
kl - + (io - vV2)cl + B(q .  c l )  + B(c,, cg) = 0. 
as 

xrnax= 0.37, ymax=-0.02 0.4 

0.2 

4.2 

-0.4 
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X 

Figure 7. Iso-velocity contours of streamwise u-velocity deficit of basic flow 
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Figure 8. Transverse profile of streamwise u-velocity deficit of basic flow (broken line) and of saturated mean flow (full line) at 
x = 4.01 

(The equation corresponding to n = - 1 is obtained as the complex conjugate of (25).) Equation (24) 
does not contain the coupling with the fist  harmonic; it is still the (self-contained) equation for the 
basic flow Equation (25) coincides with the linearized NavierStokes equation for the 
perturbation cI using co = 

The subsystem (24), (25) has been used to compute the solution of the linear eigenvalue problem” 
as the basic flow. For this reason we shall denote cI =- c~,~,,,. 

where Y[q,,bu] is the linear operator (25): 

--9[ro,brSlCl,lin = -‘V2C1,1m + B(CO,bW Cl.lin) + wI.lm9 %.bas). (27) 

An arbitrary initial condition for the perturbation can be taken, because the projections on the 
subspaces corresponding to stable (real(l) < 0) eigenvalues decay exponentially whereas the 
unstable mode is exponentially amplified. The imaginary part of the unstable eigenvalue, 
imag(l)=oo, is obtained automatically via the period correction procedure described in the 
previous section as the angular velocity of the truncated ‘Fourier decomposition’. The real part 
(real(2) = y )  of the eigenvalue is obtained as the amplification rate (slope of the logarithm) of the 
solution at an arbitrary point. The relaxation of the projection of the initial solution onto the stable 
eigenspaces is monitored by letting the amplification rate converge to a fixed value. The obtained 
solution is normalized by the maximum of the modulus of the transverse velocity component of cI. 

Figures 9 and 11 represent the u- and u-velocity plots showing the spatial structure of the 
eigensolution of the linear problem. Transverse profiles for both velocity components at a station 
corresponding to about 10 times the size of the obstacle downstream are plotted in Figures 10 and 12. 
In spite of the channel confinement and a different basic flow, the spatial structure of the linear mode 
is very similar to that of the fundamental of the unconfined cylinder wake. The particularity of the 
present configuration seems to be a more complicated structure of all harmonics near the obstacle, 
which is probably due to the presence of two mixing layers immediately downstream of the body with 
sharp edges (e.g. no lateral extrema appear for the transverse component of the fundamental of the 
unconfined cylinder wake). 
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Figure 9. lso-amplitude (top) and iso-phay (bottom) charts of streamwise component of linear mode. The phase plots are 
obtained by plotting iso-lines of the real part of the mode divided by the modulus at levels - 0.70, 0.70, 0.75 

Figure 10. 'Transverse profile of streamwise component of normalized linear and saturated mode at x = 4.01: full line, 
transverse profile of envelope (modulus) of linear mode; broken line, instantaneous transverse profile of linear mode at time 
when it touches maximum of envelope; chain line, transverse profile of envelope (modulus) of saturated mode; dotted line, 
instantaneous transverse profile of saturated mode at time when it touches maximum of envelope. The same lines are used to 

represent the transverse profiles in subsequent figures 
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Figure 1 1 .  Iso-amplitude (top) and iso-phase (bottom) chatts of transverse component of linear mode. The same levels are used 
for the iso-phase chart as in Figure 9 
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Figure 12. Transvenc profile of transverse component of linear and saturated mode at x = 4.01 
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At the chosen Reynolds number (90) the eigenvalue of the linear problem was found to be 
y + ioo = 0.0698 + i6.5467. (28) 

The eigenvalue and the form of the linear mode depend on the configuration in the same way as the 
critical Reynolds number of the instability does. In the present case the critical Reynolds number was 
found by interpolation between the amplification rate at Re = 90 (28) and at Re = 80 (yso = -0.0396), 
yielding Recnt = 83.6. 

4.5. Slave modes 

In the previous subsection we concluded that the only relevant part of any infinitesimal (linear) 
perturbation of the steady Navier-Stokes solution is proportional to the linear mode satisfying 
equations (24) and (25). Owing to the non-linear coupling of the equations of the system (1 2), the 
linear mode gives rise immediately to higher harmonics. 

Let us denote by the normalized linear mode represented in Figures 9 and 11: 

C , . ~ ~ ~ ( S .  .) = aeYs4, (29) 

where we split the normalization constant into an exponentially increasing factor and an arbitrary 
constant Q determined by the initial condition. The fact that physically the relevant part of any small 
initial condition is represented by the mode (29) can be written as 

the negative indices corresponding to complex conjugates. The infinitesimality of the initial 
perturbation is expressed by a small value of the constant a. 

If we insert the initial condition (30) into the full system (12), we immediately see that terms of 
higher order in a are generated by the non-linear couplings giving rise to higher-order harmonics. To 
obtain the order of magnitude of the harmonics, we can introduce a parameter A(s) characterizing the 
magnitude of the fundamental c I .  For small values this parameter is 

~ ( s )  "5' re?*. (31) 
Let us renormalize the Fourier components cn by introducing 

and let us replace c, by the renormalized modes in ( 1  2): 

(The bilinearity of the operator B was used to factor A~kl(s)Al"-k~(s) out of the non-linear term.) It is 
easy to see that the exponents in the sum of the non-linear terms in (33) are not negative. Indeed, for 
n 2 0, 

if 0 < k < n,  
if k < 0, 
if k 2 n. 

lkl + In - kl - In) = 
2(k - n) 
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As a result, the renormalized modes an are of the same order as the small parameter A@), the leading 
terms being obtained by truncating the infinite sum in (33) to 0 6 k ,< n for positive n and 0 2 k 2 n 
for negative n. For n 2 0 and A << 1 we thus have 

The system (34) is recursive. For n = 0 it is of course still the basic flow equation, because 
and for n = 1 we obtain the eigenvalue equations (26) and (27). For n 2 2, equation (34) n, - 

can be written as 

where 9 stands for the linear operator (27). The only eigenvalue having a positive real part being 
y + ioo, the operator in braces on the LHS of (35) is certainly non-singular and each equation (35) 
thus has a unique solution. The basic flow being steady and the time dependence of the linear mode 
being included in the normalization factor A(s), the first two renormalized modes are steady 
(%/& - 0 and &,/& - 0) for small amplitudes. This implies that all renormalized modes are 
asymptotically (for A << 1) steady and satisfy the recursion relation 

n- I 

k=l  
in()' + iWo) - ~ [ C O , ~ ] } ~ , ,  + B(ak, an-.k) '" 0, 2 2 (38) 

The higher Fourier components (n 3 2) thus have the following characteristics as long as the 

1. Their time dependence is given by that of the fundamental. In this sense they can be considered 

2. Their form is time-independent (given by (36x38)). 
3. The nth mode is amplified exponentially with an amplication rate equal to n times the 

We note that the whole renormalization procedure contains the (so far undetermined) 
normalization constant a which can be chosen arbitrarily. The amplitude value of the fundamental 
harmonic of an arbitrary flow field component at any fixed point where the amplitude is non-zero can 
be used. The linear mode being rigid, this choice is equivalent to taking the maximum value of the 
modulus of a chosen flow field component (u or v) or to taking the greater of the two maxima. In this 
paper we chose to set a equal to the maximum of the modulus of the transverse velocity component of 
the linear mode (25): 

fundamental cI remains small. 

as slave modes.' 

amplification rate of the fundamental. 

As a result, the maximum of the normalized u-component of the eigensolution 4 of (26) is set equal 
to unity. 

The parameter A(s) has the role of an order parameter of the Hopf bifurcation. The latter is 
described non-trivially by an infinite system of modes whose amplitude and form vary owing to non- 
linear effects as a function of A(s). For small values of A(s) the amplification of the instability is, 
however, very simple, as described by (31) and (32). 
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The amplification rates and the orders of magnitude of the slave modes found above can be 
deduced by perturbation methods.* Perturbation theory is, however, difficult to implement for the 
computation of the slave modes themselves and has not to our knowledge been applied to other than 
parallel The verification of the theory and computation of the forms of the slave modes by a 
direct numerical solution of the NavierStokes equation is also difficult. This difficulty results not 
only from the necessity to follow the onset of the instability from a very small perturbation but also 
from the fact that filtering of higher harmonics from the complete signal would require the level of 
the numerical noise to be below the level of the highest resolved harmonic (and we have just seen that 
the magnitude of the nth harmonic is proportional to the nth power of the hndamental one). The 
separation of individual harmonics by our method makes this investigation numerically very easy. 
The renormalization procedure (32) has not been implemented in our code. Nevertheless, we obtain 
the correct exponential amplification rate over several orders of magnitudes until saturation (Figure 
13 and Table I). Figure 13 proves that the renormalization (32) leads indeed to time-independent 

------I 

S 

S 

Figure 13. Comparison of amplification rates of five lowest harmonics. Logarithms of the l int ,  third and fifth u-velocity 
harmonics and second and fourth u-velocity harmonics at the point x = 1.04 on the flow axis divided by n are represetned in the 
top figure, showing that in the interval characterized by constant amplification rates (small amplitude) the latter are proportional 

to the order of the harmonic. In the bottom figure the amplification rates themselves are represented 
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Table I. Amplification rates of each harmonic and their compansions with amplification rate of fundamental 
harmonic G 0 , U  = C0.U - CO.u.6.s) 

7" 0.1395 0.0698 0.1396 0.2095 0.2793 0.3492 
- ny, [in.,, 7.7 x 0 9.2 1 . 3  1 0 - ~  1.0 x lo-' 1.4 x I O - ~  

* n = 2  

functions. The forms of the slave modes have been obtained by an a posteriori normalization of the 
solution of the system (14), (1 5 )  in the interval of time corresponding to a very low level ( of the 
order parameter A(s). At this level of the order parameter the non-linear corrections in (33) are of the 
order of A* = and are numerically imperceptible. The amplitude and iso-phase charts of 
several lowest-order slave modes are plotted in Figures 14, 16 and 18. The transverse profiles appear 
in Figures 15, 17, and 19 (full and broken lines). 

It is not the purpose of this paper to discuss the details of the spatial structure of the instability. We 
only note that the higher slave modes have a structure similar to that of the higher harmonics of an 

- 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

X 

X 

Figure 14. Iso-amplitude (top) and iso-phase (bottom) charts of u-velocity component of second (n = 2) slave mode normalized 
via (32) with A equal to maximum of u-velocity component of fundamental. The levels for representing the phase factor of the 

second harmonic are -0.5, 0.4, 0.6 
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Y 
Figure 15. Transverse profile at x = 4.01 of u-velocity component of second (n  = 2) slave and saturated mode normalized via 

(32) with A equal to maximum of o-velocity component of fundamental 
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Figure 16. Iso-amplitude (top) and iso-phase (bottom) charts of v-velocity component of second ( n  = 2) slave mode. 
For normalization see caption of Figure 14 
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Figure 17. Transverse profile at x = 4.01 of i;-velocity component of second (n = 2) slave and saturated mode. See caption of 
Figure 10 
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Figure 18. Iso-amplitude (top) and iso-phase (bottom) charts of u-velocity component of fourth (n = 4) slave mode. For 
normalization see caption of Figure 14 
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Figure 19 Transverse profile at x = 4 01 of u-velocity component of fourth (n = 4) slave and saturated mode. See caption of 
Figure 10 

unconfined cylinder wake; in particular, the transverse profiles of the modes farther downstream of 
the obstacle (where the influence of the sharp edges no longer dominates) have the typical character 
with n extrema for the u-velocity component and n + 1 extreme for the u-velocity one. 

4.6. Non-linear eflects and saturation 

In the previous subsection we have analyzed the phenomena characterizing the very onset of the 
instability if it is generated by a very small perturbation. This phase of the instability development is 
characterized by an exponential growth of all harmonics, the form of which remains rigid. It has also 
been shown that the size of harmonics is proportional to a power of the (small) order parameter which 
makes the Fourier decomposition (1 1)  converge very rapidly. As a consequence, the non-linear 
effects expressed in (33) are negligible. This leads to the decoupling of the system (33) into the 
recursion (36)-(38). The recursive nature of the system (38) is due to a one-way transfer of energy 
from the lower harmonics to the higher ones and to negligible energy losses at the lower harmonic 
levels resulting from this transfer as long as the higher harmonics are much smaller than the lower 
ones. In this case the system (38) yields exponentially amplified harmonics, the amplification rate of 
the nth harmonic being n times greater than that of the fundamental. During amplification the higher 
harmonics thus end up by reaching the same level as the lower ones, which triggers the non-linear 
effects via the higher-order terms in (33). 

The most important consequence of the coupling of harmonics is the transition to saturation. To 
simplifjr our analysis, let us drop all therms of order higher than two in (12). Let us define the 
renormalization factor (32) as 

i.e. A(s) stands for the spatial maximum of the modulus of the u-component of the fundamental. With 
the onset of non-linearities the modes start to deform and the s-dependence of the parameter A(s) is 
no longer independent of the position. There is of course no a priori preference for the choice (39). 
Our choice is made consistently with the previous subsection. 

The onset of saturation appears more explicitly if we consider only second-order effects in (12). 
Dropping all components and terms of order higher than A' amounts to truncating the system at n = 2 
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(Equation (32) implies that all higher harmonics are of higher order.) The renormalized system (33) 
then yields a closed system of three coupled equations 

2 dA(s) aa, 
4 s )  as a2 + -- + (2io - Y [ C ~ , ~ , ] ) ~ ~  + B(a,, a , )  = 0, -- - 

where a. = co and we have introduced the mean flow correction 

CO = CO,b= + A2(s)io (43) 

and the linear operator (27). (The mean flow correction being of the order of A2,  it is convenient to 
renormalize it by extracting the factor A'.) This system has to be completed by the period correction 
equation (22), 

and equation (39), yielding 

so that enough equations are given to determine the additional scalar functions A(s) and w(s). 
At the onset of the instability the parameter A(s) is exponentially increasing according to (31); as a 

consequence, equation (41) contains a rapidly growing second-order term. As a result of the 
amplification of the fundamental harmonic expressed by A(s), the second-order term on the LHS of 
(41) will cease to be negligible. This term can be interpreted as a coupling of the higher harmonics 
with the lower ones. Indeed, it contains a direct coupling with the second harmonic and a coupling 
with the mean flow correction & resulting itself as a feedback from the first harmonic to the mean 
value. As has been shown in Reference 15, the truncated system (40x42)  is sufficient to obtain the 
Landau model. In particular, this implies (see also Section 4.6.3) that the effect of this second-order 
term consists of slowing down the amplification and leading ultimately to a steady value of A@).  

The complete description of the instability is given by the full system (33), (39), (44), (45). In 
Section 4.5 we have seen that the exponential amplification and rigidity of the slave modes were 
explained by the recursive nature of the system (38) (obtained by neglecting the energy losses of 
lower harmonics due to the transfer of energy to higher ones). The growth of higher-order terms in 
(33) makes it necessary to account accurately for the energy balance between the harmonics by taking 
into account the inverse couplings in the same way as in the truncated system (40x42).  As a result, 
each harmonic (n = 1,2,  . . .) receives energy from the lower ones and the mean value (n = 0) and 
transfers energy to the higher ones. This ultimately brings about an equilibrium state (saturation). At 
saturation the amplitudes of all harmonics become steady and A(s) and the angular frequency o reach 
fixed values. The alternative systems (12) or (14), (15) or (33), (39), (45) completed by the period 
correction equation (22) thus become steady. In other words, the saturated wake oscillates with a 
uniform angular frequency throughout the flow with amplitudes and phases described by time- 
independent Fourier coefficients (1  1). 
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The advantage of our computing method lies in the ability to investigate directly the size and form 
of individual harmonics and analyse the effects of their coupling. 

4.6.1. Slave modes and saturated modes. The total deformation of modes due to non-linear 
couplings can be seen by comparing the spatial amplitude envelopes of the infinitesimal modes with 
the corresponding saturated modes represented in Figures 20-23. At the selected, only slightly 
supercritical, Reynolds number the deformation effects are not very strong; however, they are visible. 
As far as the mean velocity deficit is concerned, Figures 7,20 and 8 show clearly that it is reduced by 
the non-linear effects as a result of the transfer of energy of the mean flow to higher harmonics. This 
reduction is particularly strong near the maximum of the instability (between x = 1.5 and 2). The 
global trend of the forms of higher harmonics is characterized by a squeezing in the streamwise 
direction (Figures 1 1 ,  18, and 21-23 and Table 11). In the transverse direction the width of the modes 
remains approximately unchanged (Figures 15, 17 and 19; chain and dotted lines). The fact that the 
levels of the transverse profiles of the normalised saturated modes are lower at the represented station 
results from the upstream shift of the maximum. We should expect, in accordance with the 
unconfined cylinder wake, to obtain the global maxima of the even streamwise and odd transverse 
velocity harmonics lying on the flow axis.24 Figure 18 shows that for the fourth harmonic of the 
streamwise velocity the maximum of the slave mode belongs to the lateral lobe. This particularity can 
be attributed to the sharp edges of the obstacle. At saturation the same harmonic has already the 
expected structure (see Figure 23) with the dominant central lobe. As a result, the maximum of the 
slave mode does not correspond to the same lobe as that of the saturated one. If only the central lobe 
is taken into account, the upstream shift of the maximum, however, subsists. The maximum moves 
from x = 1.75 to 1-62 (see Table 11). 

The normalization (45) using a measure of the size of the fundamental appears to yield a 
satisfactory estimate of the relative sizes of individual harmonics in the whole domain of magnitude 
of the parameter A@). This can be seen in Table 11, where the maximum values of all computed 
modes normalized via (45) and (39) are given. These maxima appear to be all of the order of unity. 
This means that the Fourier decomposition ( 1  1) has roughly the convergence of a geometrical series 
with A(.$ as the quotient. The found value A(oo)  = 0.156 explains its rapid convergence. 

Figure 20. Iso-velocity contours of mean u-velocity deficit at saturation 
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X 

Figure 21. Iso-amplitude (top) and iso-phase (bottom) charts of transverse v-velocity component of normalized fundamental at 
saturation 

Figure 22. Isc-amplihdc chart of streamwise u-velocity component of normalized second (n = 2) Fourier mode at saturation. 
For normalization see caption of Figure 14 
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Figure 23. Iso-amplitude chart of streamwise u-velocity component of normalised fourth (n = 4) Fourier mode at saturation. 
For normalization see caption of Figure 14 

The normalized mean value correction was also included in Table 11. It was obtained by subtracting 
the basic flow from the mean flow. The normalized maximum for the streamwise velocity component 
appears to be substantially higher than for other normalized modes (about 10-1 1.5 as compared with 
about 1-3). Almost the same value found for the linear regime and at saturation confirms the second- 
order magnitude of this correction. 

The high level of the mean value correction of the streamwise velocity results in a spectacular 
modification of the mean flow due to the instability development, in particular in an unconfined wake 
and for higher Reynolds number values.23 However, even in the presented confined case the mean 
value correction leads to a relatively significant deformation of the mean flow (see Figures 7 and 20). 
The mean value correction being primarily a result of the coupling between the mean value and the 
fundamental (see equation (41)), it can be concluded that this coupling will be essential for the non- 
linear effects of the instability. This conclusion was hrther confirmed by the analysis of the 
numerical accuracy of the Fourier development in Reference 19, which showed that the saturation 
could be obtained by taking into account merely the coupling of the f is t  harmonic with the mean 
value. The coupling with the second harmonic in (41) appeared to lower the amplitude of the 
fundamental only by less than 2%. 

Table 11. Positions of maxima and maximum values of normalized modes (45) 

Slave modes Saturated modes 
a, a1 a2 a3 zh a5 I a, a1 a2 a3 a4 a5 
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In Figures 9, 1 1, 14-18 and 21 we represented also the iso-phase charts. These charts make it 
possible to estimate the local wavelength (by measuring the spatial distance between successive 
corresponding iso-phase lines). It appears that the wavelength varies throughout the domain for each 
harmonic. On one hand the wavelength is shorter along the solid wall, bringing about phase 
dislocations even for the hdamental  harmonic; on the other hand, e.g. in Figure 21, it increases 
downstream of the obstacle along the flow axis up to about x = 2.5 and starts to decrease beyond this 
station. The comparison of the charts for various harmonics shows that, except close to the obstacle, 
at a given point of the flow the local wave number of the nth harmonic is quite accurately 
proportional to n times the local wave number of the fundamental, which means that each point of the 
flow is characterized by roughly the same phase velocity for all harmonics. These properties can be 
analysed more accurately by computing local wave numbers using the formula 

where the index n, u refers to the streamwise component of the-nth harmonic and qn,u stands for its 
phase. In the same way we can define the local wave number k,," relative to the ucomponent. The 
local phase velocity is obtained by dividing the angular frequency o by the local wave number. 
According to what we have said about the wavelength, the phase velocity is smaller in the near wake 
and grows slightly downstream (see Figure 24) along the flow axis in the interval 0 < x -= 2.5. For 
our nearly critical Reynolds number the variation in the wave number due to saturation is relatively 
small (about 1.3% on average and 4.5% at x = 5).  These variations are partially compensated by the 
1.06% increase in the angular velocity (see Figure 25) to yield an average phase velocity variation of 
only 0.2%. 

Let us remark that the fact that the local phase velocity is almost the same for all harmonics, except 
immediately downstream of the obstacle, sets a very physical constraint on the spatial resolution of 
the flow field. Assessment of the obtained convergence rate of the series (1 1) presented in Reference 
19 or based on Table I1 and the level of the fundamental shows that accounting for more than five 
harmonics would bring corrections well below the machine accuracy. This is due to the low, nearly 
critical, Reynolds number. For higher Reynolds numbers the saturation value A(w) of the order 
parameter of the bifurcation increases, making the convergence slower. This might lead to the 

Figure 24. Phase velocity along Row axis for transverse component of fundamental harmonic for small amplitudes (full line) 
and at saturation (broken line) 
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Figure 25. Time evolution of local angular velocity at point ( I  44, 0.0) 

necessity to account for a higher number of harmonics if a high precision is sought. (Actually, in the 
unconfined cylinder wake the characteristic value of A(w) was found24 to be as high as about 0.4 at 
more than twice the critical Reynolds number.) Neglecting harmonics higher than n = 5 yields then 
an error of about 0.6%. If a better accuracy is sought and more harmonics, say N, are to be taken into 
account, it has to be noted that the spatial resolution must be sufficient to capture the wavelength of 
the highest of them, which is N times smaller than that of the fundamental. In our case the wavelength 
of the saturated fundamental was found to be 1.12 at x = 5.  As a result, the wavelength of the fifth 
harmonic is about 0.22, whereas the step of discretization of the x-co-ordinate increases From 0.032 to 
reach 0.13 at this place (x  = 5) of the computational domain and the fifth harmonic is badly resolved 
so far from the obstacle. 

4.6.2. Saturation process. The onset of the saturation process occurs simultaneously on all 
harmonics as can be seen in Figure 13. If we define the onset of saturation on the nth harmonic by a 
1% decrease in the amplification rate divided by n with respect to the linear value y and the 
completion of saturation as reaching 99% of the saturation value, we find the saturation process to set 
in at s sz 145 and to end at s sz 215, i.e. to last about 70 dimensionless time units. The so-defined 
onset of saturation occurs when the parameter A(s) reaches roughly 10% of the saturation value 

Another quantity displaying the same behaviour is the instantaneous angular velocity o appearing 
in (12). The period correction being defined at a selected point i,,, o represents, strictly speaking, the 
local angular velocity at this point. The local instantaneous corrections with respect to this value are, 
however, very small. The time evolution of the angular velocity has been represented in Figure 25. It 
shows the same time interval corresponding to the saturation process as the amplification rates. Let us 
recall the difficulty of extracting the initial linear value oo from a direct simulation (Figure 5) .  In this 
case the constant value corresponding to the linear regime is clearly visible and allows us to obtain 
the increase in angular velocity A o  due to non-linear effects very accurately: Ao = 0.0703. The 
trend of the angular velocity to increase is due to the supercritical nature of the bifurcation. 

The form of the modes is also sensitive to the onset of saturation. Indeed, knowing that the modes 
are rigid both for small amplitudes and at saturation, we can define the saturation time interval also as 
that corresponding to 99% of the streamwise shift of the maximum of the modulus corresponding to a 

A(w)  = 0.156. 
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Figure 26. Evolution of streamwise profile of fundamental of transverse u-velocity during satumtion process: full lines, s = I SO; 
broken line, s = 170; chain line s = 180; large-dotted line, s = 190; smalldotted line, s = 2 10 

given component and harmonic. That is, if Ax is the total shift of the maximum in the upstream 
direction, the onset of saturation corresponds to x- = x - , ~ ~  - 0.01Ax and its completion 
corresponds to the maximum position reaching the value x,, = x - , ~ ~  + 0-Ol Ax, with xmpx,small 
standing fro the maximum of the infmtesimal mode and x,,,, for the maximum at saturation. Then 
the time interval characterizing the saturation extends from s 144 to 213 (see Figures 26 and 27). 

Another interesting issue is the uniformity of ‘instantaneous’ and ‘local’ angular velocities of the 
flow oscillations. We have seen that the Fourier coefficients c, or their normalized counterparts a, 
were able to accommodate deviations with respect to the angular velocity appearing in the Fourier 
decomposition (1 1). These deviations are described by the angular velocity of the computed modes in 
the complex plane and can be expressed as vector hc t ions  of the space position with components 
corresponding to both components of the harmonics. At saturation, equations (12) completed by the 
period correction procedure (22) become steady and thus the Fourier coefficients no longer rotate. As 
a consequence, the flow oscillations obtained are, in accordance with direct simulation r e s~ l t s , ’~  

Figure 27. Time evolution of x-co-ordinate kof maximum of u-velocity component of fundamental harmonic 
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characterized by a period which is uniform throughout the flow. Its value is expressed by w appearing 
in (12) and obtained by the period correction (22). The same was shown to hold for small amplitudes 
where the system (12) is unsteady but where the time dependence could be extracted via the 
renormalization (31), (32). During the saturation process the local angular velocities vary in space 
from component to component and from one harmonic to another. In order not to overburden the 
paper with too many figures, we do not present the corresponding chart. We found the angular 
velocity of e.g. the 2;-velocity component of the fundamental ( c ~ , ~  at a time corresponding to the 
middle of the saturation process to vary in space within about 0.5% of the angular velocity increase 
Aw =: wsa, - wo due to saturation. The local angular velocity was found to decrease in the 
downstream direction, which means that the saturation process sets in more slowly farther 
downstream of the obstacle. This conclusion is confirmed by an analogous analysis of local growth 
rates and by direct simulation results. 

4.6.3. Validity of the Landau model. Let us consider again the simplified system (40)-(42). If we 
assume, in accordance with Reference 15, that the mode deformation described by & , / a s  is much 
slower than its amplification, we can neglect this derivative in (41) and assume that the form a1 does 
not differ very much from al,lin. We can then denote the complex Landau constant relative to a given 
velocity component (here e.g. v )  at a fixed point fo as 

d")(;,) = [B(a2, al)  + B(a,, a2) + B(&, a l )  + B ( q ,  50)1v,20 

where we have stressed the component and position dependence." The real part of (41) then gives 

(46) 
a ,  ,,(%J7 

ads- - y - du)(20)/42(s) (47) 

and the imaginary part gives 

0 = 0 0  - cI"'(;,)A2(s), (48) 
where d"' and C;"' stand respectively for the real and imaginary parts of the Landau constant. We 
thus amve at the well-known local Landau-like6 behaviour which is known to model the saturation 
of amplitudes, i.e. the fact that the amplitude and angular velocity of wake oscillations tend to 
constant  value^.^*'^ The local interpretation of the Landau model for wakes has been discussed in 
Reference 1 5. 

The Landau constants can be determined from the saturation amplitude and angular frequency 
(equations (47) and (48)) so that the model is (trivially) exactly satisfied for small amplitudes and at 
saturation. The issue of the Landau model validation consists of verifying the linearity of the RHSs of 
(47) and (48) as functions of A2(s). In Reference 15 we have shown that the Landau model is rather 
well-satisfied near the threshold at any fixed point of the flow, but we pointed out that the deviations 
from the Landau model are visible even at low Reynolds numbers. These deviations are caused by the 
deformation of the mode contradicting the assumption leading to the Landau model. The knowledge 
of the instantaneous values of the amplitudes and angular frequencies of the wake fundamental at all 
points of the flow allows us to investigate equation (48) and to see how the Landau-like behaviour is 
satisfied in time and in space. 

It appears that farther downstream (at x = 5) and on the flow axis the Landau model (47), (48) 
underpredicts the instantaneous non-linear correction of angular frequency in the middle of the 
saturation process (s 180) by as much as 20%. Upstream, near the obstacle, the growth of the mode 
is more rapid and, as the gradient between the obstacle and the maximum of the normalized mode 
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becomes steeper (see Figure 26), the mode deformation appears to be able to compensate the 
difference with respect to the Landau model prediction. Quite near the obstacle (for x < 1) the 
Landau model is found to overpredict the angular velocity correction by about 3% in the middle of 
the saturation process. At x = 1 the angular velocity equation of the Landau model is almost exactly 
satisfied. However, the amplitude equation (47) is not satisfied at this point, so that no point where 
both equations were satisfied could be found. 

In spite of this conclusion, we have seen that it is possible to fit the Landau model constants so as to 
make the model exact for very small amplitudes (in the domain of the exponential growth of rigid 
modes) and at saturation. As a result, some Landau model parameters keep their rigorous physical 
significance. This issue has been addressed in more detail in Reference 15, so it is sufficient to give 
the values of these constants found here. Firstly, equation (47) and (48) contain of course the linear 
eigenvalue given by (28). The constant (46) has been shown to be specific for a given position and 
component; however, the normalized Landau constant CJC, has been recognized (e.g. References 5, 
10 and 20) as a relevant characteristic. Taking into account thatls (see equation (47) and (48)) 

Ci/C, = -Ao /y ,  

Au being the increase in the angular velocity due to non-linear effects, the normalized Landau 
constant is a global characteristic. 

In our case the normalized Landau constant assumes the value 

Ci/C, = -1.0068. (49) 

To give an idea of the potential (without account of the spatial discretization errors) precision of the 
determination of this constant by our method, let us note that the angular velocities of the Fourier 
components (1 1) were found to be very accurately zero not only at saturation (where the whole 
decomposition is steady) but also for small amplitudes (interval of constant growth rates). As a result, 
the time discretization errors are only of a spectral character and should not thus be higher than lo-’ 
as far as the determination of the value A u  is concerned. As a result, a similar error estimate can be 
set for the value (49). This is to be compared with direct numerical results (an error of about 3% was 
obtained in Reference 15) or with experimental measures (16%”). The error of the normalized 
Landau constant is thus entirely controlled by the spatial discretization (about 1%). 

5 .  CONCLUSIONS 

In this paper we have addressed the point of the physically relevant characterization of the Benard- 
von K h a n  instability. The same issue was discussed already in our previous works in the context of 
the Landau model interpretation” and of the description of the symmetry conservation at the Hopf 
bifurcation. It has been shown that the well-known symmetry breaking can be interpreted as a 
transition to a more complex group representation of the corresponding symmetry group (the y-co- 
ordinate inversion in a symmetric 2D wake). This group representation was found to be defined by 
the same set of Fourier components as that used in this paper. 

The present numerical study gives further, more general, support to the physical relevance of the 
Fourier modes of the wake. It shows that the Benard-von Kamh instability can be mathematically 
accurately and physically correctly described by the set of its time Fourier components considered as 
functions in space slowly varying in time. The basic theoretical concept of the present Fourier mode 
description is a natural extension of linear and weekly non-linear theory and provides a continuous 
link between linear theory and a full NavierStokes description. We have shown that it can account 
for all known non-linear effects observed in wakes. It is sufficiently general to be able to 
accommodate all wake configurations, the geometry (3D, symmetries, boundary conditions) being a 



784 G. CARTE, J. DUSEK AND P. FRAUNIE 

matter of the spatial description which can be implemented arbitrarily. Though we have not submitted 
our theory to tests for other cases of the Hopf bifurcation, we believe it applies to Hopf bifurcations in 
general, at least not too far from the threshold. 

For the first time it has been possible to follow the pertinent characteristics of the instability from 
the onset until saturation. Though weakly non-linear theories’ allow one to predict qualitatively the 
existence of slave modes’ at the onset of the instability, these higher-order modes have never been 
computed before in a fully 2D case. The amplification rate and the detailed spatial structure of the 
slave modes have, moreover, been followed in a continuous way all the time from the linear regime 
until saturation in this paper. 

Not only could some expected, but never rigorously proved, properties such as those of the linear 
regime amplification rates of higher harmonics could be confirmed, but also several new results of 
practical and theoretical importance have been obtained. The most important are the determinant role 
of the coupling of the fundamental with the mean value for the saturation providing a physically more 
accurate alternative for a qualitative modelling of the instability than the widely used Landau model, 
the determination of the level corresponding to the onset of saturation setting the limit to linear 
theory, the estimation of the convergence properties of the Fourier decomposition having important 
numerical implications and the accurate computation of the angular velocity increase giving access to 
the normalized Landau constant. 

Apart from its theoretical relevance, the Fourier mode representation proves a natural and 
extremely accurate spectral representation for a numerical description of the wakes. This description 
allows us to use any space discretization method for the modes and obtain a highly efficient, 
spectrally accurate time discretization. The latter being easily made more accurate than the spatial 
one, the method enables us to fully exploit the possibilities of the spatial solver. Physical 
considerations concerning the wavelengths of harmonics provide a very simple tool for balancing the 
spatial and temporal discretization accuracy. 
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